News

Defending the Most Sustainable Construction Material: Our Response to CNN’s Portrayal of Concrete

 

It is well established that cement production is responsible for 5-8% of the global CO2 production. However, cement only contributes to 10-15% of the total volume of concrete, due to the large volumes of sand and gravel used. This makes the overall impact of concrete as small as shown in the table above.

The only reason cement contributes to such a high percentage of CO2 is the extremely large volumes required to meet ongoing demand. If the same demand on concrete was shifted to any other material (such as wood or steel), these materials would contribute to a much more detrimental CO2 production. Just compare the CO2 produced for concrete to that of wood or steel in the table above.

Let’s put these numbers into perspective. If we assume that 0.9 lbs CO2 are produced for every 1 lb of cement, then for every cubic yard of concrete (3900 lbs), approximately 400 lbs of CO2 are produced (assuming typical plain Portland cement mixtures). This 400 lbs of CO2 is the same contribution of 16 gallons of gas in a vehicle, one year of home computer use, or one year of microwave oven use.

Also, if this is compared to other significant CO2 emission sources, an average home produces 28,400 lbs of CO2 per year, two family vehicles produce 26,500 lbs of CO2 per year, and one 747 passenger jet (from New York to London) produces 880,000 lbs of CO2. When these numbers are presented in perspective (which was not done in the CNN article), the efficiency of concrete becomes rather evident.

Considering Availability and Cost, No Other Option Possesses the Required Set of Properties

When asked why we continue to build with concrete given the concerns about its environmental impact and structural longevity, the interviewees’ answer was far from the truth. Concrete is not used because it is “cheap, versatile, quick to erect and requires no addition fireproofing” or because “making concrete (…) is a huge business, so much so that it’s sort of become identified as the mafia.”

Concrete is used because there is simply no other option available with the set of required properties. Only eight elements make up 98% of the earth’s crust: oxygen, silicon, aluminum, iron, calcium, sodium, potassium, and magnesium. All of these are components of modern-day Portland cement. Therefore, we can remove the other 2% from the list of available options or the compounds made from the other 2%.

Let’s take graphene as an example because it was suggested in the CNN article as a future alternative for concrete. We can consult graphene production procedures to understand the limited feasibility of producing such a material in the amounts required to replace concrete.

This leaves us with two reasonable options: wood and steel. As shown in the above table, steel’s embodied energy and CO2 are at least one order of magnitude higher than those of concrete. In the case of wood, only 26% of world roundwood supply is from sustainable forests, implying that the remaining 74% contributes to deforestation; therefore, the global structural timber sales have been stable or declining (ITTO, 2011).

One can only imagine the fate of the atmosphere if all of the demand for concrete (roughly 15 billion tonnes) was shifted towards wood. It can thus be concluded that there is absolutely no other option currently available, considering the abundance of limestone (the primary ingredient in cement) within the earth’s crust.

Structural Properties of Concrete vs. Wood or Steel

If we were to replace concrete with a different building material, we would need to consider the structural properties. In other words, a column of concrete with certain dimensions cannot be replaced with a column of wood with the same dimensions.

The figure below (Purnell, 2013) shows a comparison of concrete (denoted C50) versus glulam wood and steel in terms of Kg/CO2 for every KPa (a unit of force/strength). It is clear that for any reasonable structural member dimensions, concrete provides a significantly lower carbon footprint.

Thermal Insulation, Service Life, and More

Although the above analysis shows that concrete is by far the most sustainable option, other factors need to be considered. One of the factors that was mentioned in the article is concrete’s ability to sequester CO2 throughout its service life. However, another factor not mentioned in the article is concrete’s thermal-insulation ability, which reduces electricity and heat production. In today’s world, electricity and heat production contribute to 25% of global GHG emissions; this number can be expected to rise significantly if concrete is replaced with other, lower-insulation materials.

Other factors include concrete’s long-lasting service life as well as its use of industrial waste/by-products like fly ash (a by-product of coal production), ground-granulated blast furnace slag (a by-product of steel production), and silica fume (a by-product of ferrosilicon alloy production).

The above discussion clearly indicates that the options available to replace concrete are limited, if at all available. Concrete is generally a sustainable material compared to any other reasonable option. Knowing this, we hope to clarify any misconceptions caused by the CNN article, which did not reflect an accurate and fair depiction of concrete construction.

References

  • Scrivener, K. (2014) “Options for the future of cement”, The Indian Concrete Journal, Vol. 88, Issue 7, pp. 11-21
  • Hammond GP and Jones CI (2008) Embodied energy and carbon in construction materials. Proceedings of the Institution of Civil Engineers – Energy 161(2): 87–98
  • Purnell, P. (2013). The carbon footprint of reinforced concrete. Advances in Cement Research, 25, 6.
  • ITTO (International Tropical Timber Organisation) (2011) Annual Review and Assessment of the World Timber Situation 2010. ITTO, Japan, see www.itto.int/annual_review/ (accessed July 2013).

 


This article was first published in Giatec – Concrete Hub, and is reproduced here with the kind  permission of the authors and Giatec

PNBRC

Recent Posts

Why We Need to Incorporate Climate Data Into New Construction Planning

Climate change isn't just a buzzword — its effects are becoming more cataclysmic. It is…

1 month ago

Green cement production is scaling up – and it could cut the carbon footprint of construction

Aside from water, concrete is the most-used material in the world, with about 14 billion…

2 months ago

New stormwater infrastructure is needed for Canadian cities

Flooding in Montréal, and other Canadian cities, is becoming a more frequent occurrence.

3 months ago

Ancient Rome had ways to counter the urban heat. What are history’s lessons for today

As intense heat breaks records around the world, a little-reported fact offers some hope for…

4 months ago

More cities are getting hit by multiple disasters, and that complicates everything from insurance to rebuilding

Climate change will bring new weather patterns that are beyond emergency managers’ current playbooks, which…

4 months ago

To cut the carbon that goes into buildings, we need radical change

New research shows while we can greatly reduce embodied carbon in Australia, it will require…

4 months ago