Building Resilience

Reducing Emissions in the Use-Phase of Concrete Infrastructure

By: Rick Bohan

The Roadmap to Carbon Neutrality, released by the Portland Cement Association, addresses the five links in the cement-concrete-construction value chain critical for reaching carbon neutrality. Opportunities to lower emissions at the cement plant and optimize the manufacture and use of concrete are important parts of the value chain, but there are also opportunities to reduce and remove carbon once a building is constructed or a pavement is in place.  

Concrete made with cement creates long-lasting, energy efficient, and climate-adapted structures. Concrete’s thermal mass, strength, durability, and resiliency all contribute to cutting use emissions – and the use-phase of infrastructure and buildings is by far the longest in a building’s life cycle.   

Additionally, through a process called carbonation, concrete naturally absorbs carbon dioxide in the air. Concrete is a porous material, like a sponge, and carbonation is a naturally occurring process where CO2 in the air reacts with the calcium hydroxide within concrete forming calcium carbonate, a naturally  occurring mineral  that  is  a  common ingredient in everything from toothpaste to antacids. 

In fact, for all the concrete produced in the U.S. between 1990 and 2018, more than 300 million metric tons of CO2 will be absorbed and sequestered by concrete over its service life. Concrete is actually considered a carbon sink as it permanently stores CO– even when it is broken up or demolished that CO2 remains permanently trapped.  

Concrete complements existing carbon sinks (like forests) by not just passively absorbing CO2 but also offering a place to permanently trap captured CO2. Carbon dioxide can also be injected into fresh concrete or introduced under pressure in chambers containing concrete products as a solution for storing captured carbon.   

How much CO2 is sequestered depends upon the surface area of concrete that is exposed to the atmosphere and the length of exposure. Over the course of its service life, a concrete structure can reabsorb at least 10% of the CO2 generated during the production of cement and concrete. That percentage will only increase as the industry continues to implement more sustainable manufacturing methods and materials and as we better quantify this unique process. 

In addition to being a carbon sink, concrete is the foundation of sustainable cities by making buildings and roads more efficient, cutting use-related emissions.  

Homes with concrete walls can use up to 15% less energy than other homes. Concrete does not rust, rot, or burn, therefore saving energy and the resources needed for regular maintenance or repairs to our buildings and infrastructure. Additionally, concrete makes urban areas cooler because its lighter color reflects more sunlight than darker materials.  

The durability of pavement is extremely important to driving down emissions as well. Not only are poor roads a nuisance for drivers, but they are also bad for the environment. Fuel consumption and emissions from vehicles depend on several factors, including pavement-vehicle interaction, which put simply is the quality of the road. When the surface conditions are good, vehicles can travel with optimal fuel consumption.  

The impact of rough roads has been seen across the country. For example, over a five-year period, 1 billion gallons of excess fuel was used in California due to poor pavements. Similarly, a study by the MIT Concrete Sustainability Hub found that excessive fuel consumption on 5,000 miles of Virginia interstate highways resulted in 1 million tons of carbon dioxide emissions over a seven-year period.   

With the need to build sustainable infrastructure that limits use emissions, concrete is a key part of the equation. With the added benefit of its ability to sequester carbon, concrete offers a unique and versatile solution and building material.   

_____________________________________________________________________

Rick Bohan is the Senior Vice President, Sustainability, Portland Cement Association. This article first appeared in the Shaped By Concrete pages of the Portland Cement Association website, and is reprinted here with the kind permission of the author and the Portland Cement Association.

 

PNBRC

Recent Posts

Tariffs Detrimental to U.S. – Canada Relationship

The Pacific Northwest Economic Region (PNWER) has for decades recognized the critical importance of robust…

2 weeks ago

Canada modernizes disaster recovery funding program

These changes will ensure increased, timely, and flexible federal funding is available to support provincial…

3 weeks ago

Americans face an insurability crisis as climate change worsens

As climate related disasters worsen – a look at how insurance companies set rates and…

1 month ago

As climate changes, the way we build homes must also change 

What is a “resilient home? Resilient homes are built to withstand extremes, such as heavy…

1 month ago

Insurance for natural disasters is failing homeowners − I don’t have the answers, but I do know the right questions to ask

As floods, storms, wildfires and other catastrophes become increasingly common, the availability and affordability of…

1 month ago

Global temperatures passed critical 1.5°C milestone for the first time in 2024 – new portrayal

The damage is seen across many industries, including in the construction sector. That’s why climate…

1 month ago